
1. Pre-release history of redstone

Redstone was added during alpha as a simple system of wires, switches, and not gates that
could control doors opening and closing, the direction of rails, wether or not a torch was lit, and
the activation of explosives. This system had fully functional boolean logic and did a good job of
modeling computer control in the game.

A modern player would probably think that redstone is… basically useless at this point. There
are barely any components, and the ones that existed seemed simple and not very useful.
There were *three* different ways of sending a redstone signal conditionally. The Switch, which
turned an input on or off, the button that could send a pulse, and a pressure plate, which would
send a signal as long as it was being depressed. In terms of outputs, redstone could open and
close doors, turn a redstone torch on or off, and change minecart tracks.

Surely, this is an almost entirely ineffective system for getting anything done, and compared to
modern redstone, it might seem that way. However that is not the case, because redstone’s
greatest strength wasn’t in its own components and functions, it was in its interactions between
itself and other systems.

2. Boats, minecarts, and pistons (“why pistons are different”

Let’s look at three systems that interacted with redstone, Boats, Minecarts, and Pistons. Starting
with boats and minecarts, since they were around first, and also do a good job of illustrating
contrast between the alpha approach to redstone, and the beta approach to redstone.

Boats were once the most useful redstone component, because they are physics objects that
are easily controlled using the water physics that were in the game from before redstone was
added. With boats you could make devices that could not be easily implemented otherwise, like
T-flip flops. The same mechanisms used to interface the physics system with redstone for boat
control in circuits, also worked to let the player improve the capabilities of boats in general. The
EATS road, and other similar projects created during this time would have been much simpler,
and less useful if not for redstone.
Boats are, in my opinion, the most elegant example of the alpha redstone philosophy. Through
simple changes to the game world, independently useful systems and objects become useful as
a result of their pre existing functions and properties.
Later in this essay, when the “beta philosophy” around redstone design is defined, there will be
a section calling back to this one that explains exactly why it matters that the system works the
way described.

Minecarts were, when redstone was added, incomplete. The Furnace minecart system was
broken and unfinished, and as a result, Players had to eventually resort to exploiting the
scattered and unfinished parts of this system to create effective minecart travel.



Redstone changes only one element of minecarts. Where previously tracks would always be
static, now they can switch direction when powered or unpowered by a redstone line. This
interaction is very important to the history of redstone.
On a surface level, it is similar to redstone opening and closing doors, a simple action that could
have been achieved by the player, but is now automatable through redstone. It also serves a
similar function to redstone’s interactions with boats, in its ability to control the speed, and
position of a physics object, even if indirectly.
I think this read isn’t particularly far from correct, and given the more limited ability to manage
minecart speed (especially across reloading a location) when compared to boats, Redstone had
a much stronger effect on minecarts than minecarts had on redstone.

This effect got even stronger in Beta 1.5, and was made overwhelming with a bug fix in beta 1.6.
By the time the game entered full release, minecarts were a system entirely reliant on the
redstone system to function effectively. The only way to use the minecarts for their intended
purpose of high speed interaction was by crafting an expensive redstone component, and
learning the basics of boolean logic. Minecarts stopped being an independent system based on
physics interactions, and started being a client system to redstone, usable only with, and in
many cases only for redstone circuits.

The very next update after minecarts were made entirely reliant on redstone, Pistons were
added to the game, based on a popular mod at the time. The piston is, in my mind, the final
blow to the alpha philosophy of redstone design. It is entirely a mechanism for redstone
components to affect the world. Pistons cannot operate on their own, or based on some other
external stimuli.
The biggest effect of pistons, wasn’t actually their intended capabilities, of moving blocks around
a small amount, but actually replacing boats in redstone devices. Almost every device that used
a boat before now was easier to build, and more reliable to use, if built with a piston. Block
Update Detectors, T Flip Flops, and more became systems entirely contained within redstone.
Systems which external knowledge of the game mechanics were mostly unimportant to. In Beta
1.7, Redstone stopped being part of minecraft, one of many integrated systems that interacted
in interested ways, and instead became a completely different system built in minecraft’s
engine, which occasionally brushed up against the rest of the game.

3. The philosophies of redstone

I would like to propose that redstone’s game design can generally be split into two different
approaches, which I will be referring to as “the alpha philosophy” and “the beta philosophy”
because I think that those two words’ meanings in terms of game design are relevant to the
ways the philosophies arose.
I’d like to clear up that I don’t… Really attribute this change in philosophy to some cleverness on
Notch’s part that was somehow overwhelmed by the influence of Jeb and the other developers
during Beta. I think the alpha philosophy (like a large portion of minecraft’s best design) was
something that arose accidentally as a result of the game’s playful experimentation during the
early phases of development. I think if Notch had continued to be a solo dev, the beta design



likely would have arisen no matter what, as Mojang went back and tried to “clean up” the game
for its release.

I’m going to define the “alpha philosophy” of redstone design as follows:
Redstone should act as a boolean logic system, which can be used to control or alter the

state of elements in other self-sufficient systems.

And the “Beta Philosophy” as follows:
Redstone should be a system which uses boolean logic and can use specialized single

purpose components to directly interact with large portions of the game world directly.

A good example of the difference between the two philosophies is actually a pair of modern
components. The Comparator, and the Sculk Sensor
The comparator is a device which is entirely contained within, and provides no utility without the
redstone system. It can detect the strength of redstone signals, and has multiple modes that
allow it to output different redstone values based on its input strengths.
The Sculk Sensor is an object found naturally in the game world, which emits a signal to other
sculk sensors and shriekers nearby based on detected sounds. It also emits a redstone signal
while doing so.

The comparator is the example of Beta Philosophy redstone design. It is a self contained
component which reads the strength of redstone signals. It is entirely reliant on arbitrary and
intentional implementation of devices emitting varying redstone signals to interact with almost
any element of the game world that is not already part of the redstone system (i.e. weighted
pressure plates, lecterns, chiseled bookshelves)

The Sculk Sensor is a piece of Alpha Philosophy redstone design. It serves an independent
purpose, unrelated to redstone, but a clever player who is willing to experiment, is able to use it
as a component in redstone circuits (noise activation), and to manage its activity using redstone
circuits (noise machines). It is fully a part of an independent system, unrelated to redstone, but
is able to interact with redstone.

I think the sculk sensor would have been a “stronger” example of Alpha Philosophy design if
they didn’t output a signal, and a Block Update Detector was required to make use of them as
inputs… but that is a nitpick, and also irrelevant now that Block Update Detectors themselves
have been replaced by integrated circuits.

4. Integrated Circuits

An integrated circuit, in this context, is a craftable device which replaces a function which could
previously have been created with a handmade circuit of pre-existing blocks. The simplest
example of an integrated circuit is the repeater. Before beta 1.3, a repeater was a device that



was created by clever players using redstone torches. But, the repeater as a block directly
replaced that kind of device for all players.

If you are a fan of modern redstone, you may be astonished, and perhaps even angry at me
claiming something like “integrated circuits are bad design” when comparators, observers,
repeaters, and copper bulbs are seen as beloved and important. But, I want you to not think of
the convenience provided to an already experienced player, but the way that redstone interacts
with the rest of the game, and how it is presented to an inexperienced player.

Integrated circuits are essentially, replacing gameplay with a menu interaction. Where before an
IC’s introduction, the process of making Block Update Detector, or repeater, or t flip flop was one
of gameplay, where players would interact with the game system in a meaningful and interesting
way to solve a problem. After the introduction of those devices, the player thoughtlessly crafts a
simple block to create the same effect, the same way, every time. The gameplay of problem
solving that once existed, has been replaced for the sake of making certain obscure and niche
devices more convenient to build.

When Mojang replaces gameplay with menus for item acquisition (such as with villagers) it is
generally seen as weak and annoying design, but there is not similar backlash around these
decisions in redstone. Why?

5. The Isolation of redstone

Have you ever seen that popular portrayal of minecraft in memes and the such that presents a
multiplayer gaming community in a Minecraft server as having niches. Miners, adventurers,
builders, redstoners, villager experts. There are nearly as many disparate player types as there
are gameplay systems to interact with… now, I am going to talk in this video about something
not every viewer might be familiar with, and I ask you to either go try this yourself, or if not,
believe my extensive firsthand experience on this topic to be accurate.

If you play Minecraft alpha, there will not be the same experience. Players will not fall into
niches after the first few days. Instead, what I see in Minecraft alpha, is that if players are
engaged for long enough to keep playing for a while, that they’ll end up engaging with all of the
game’s systems in similar proportion.

Every player will make *some* redstone, and *some* ambitious builds, and do *some*
exploration, and *some* mining.

Now before I get into specifics, I want to mention that if you do try playing Minecraft alpha,
especially multiplayer, you shouldn't play vanilla, but instead a continuation mod called NSSS
that (in a very lightweight and sometimes unnoticeable way) expands on the design and content
of Minecraft alpha. I would recommend playing it if you want to play a more stable, and more
fleshed out experience for Minecraft alpha, I personally play it over minecraft alpha most of the



time, and this video was partially inspired by my hopes for where that mod goes, and how I think
about minecraft is often directly inspired by my experiences playing NSSS.

Moving on.

Minecraft, in Alpha, was a game that encouraged interaction with, and understanding of, every
system in the game. The building, engineering, and adventuring systems of the game locked
into each other to create gameplay where a player interacts with all of them.

In the thesis video of this series I will go more in depth on how these loops as a whole interact,
or don't, but for now I'm going to focus on the engineering aspect of the game.

I am being careful here to call the mechanics in alpha engineering, as opposed to a narrow
reference to the redstone mechanics that are nowadays the dominant system of engineering
gameplay. I made this choice because I feel like in alpha, engineering was a process that
involved an understanding of multiple systems, of which redstone is often only a small section of
the engineering work done.

For a good example of “engineering” separate of redstone, EATS is a device which is primarily
made up of the boat mechanics and water physics, but uses redstone in a limited capacity as a
control system to manage path choosing. Minecarts similarly functioned independently, while
still interacting with redstone. And some kinds of engineering, like monster farms, very often
involved no redstone at all.

Engineering is often the “late game activity” that players will spend the most time engaging with.
as a player’s control of the world extends further, and their infrastructure becomes more
extensive and unwieldy, automation and engineering become more important to players, and
they are directly driven to automate and improve that infrastructure through those mechanics.

Walkways will become railways, stairs will become boat elevators, doors will be redstone
operated, farms will be cleared with one click, instead of dozens.

This is not the fascination of a few devoted fanatics, or a game mechanic so overwhelming and
self contained that many players can interact only with it to the exclusion of the rest of the game.
This is a core part of the game’s progression and standard gameplay, which every player who
plays the game for long enough is going to be pushed to interact with by the game design. And
it being otherwise, is a flaw in the game, in my opinion, one of its most major.

6. Conclusion and summary

It is my belief, and the argument of this essay, that over the last thirteen or so years Mojang has
made a set of decisions which exchanged the learnability, variety, wider gameplay focus, and
player expression of minecraft’s engineering mechanics for the sake of making what was once
one small component of those mechanics more reliable and compact.



This video is not a “fixing redstone” video, because I think that at this point minecraft has gone
so far in another direction that “fixing” this mechanic to function in concert with the game's other
systems is impossible, and would probably annoy so many more people than it pleases that it
would never be done, and likely shouldn't be done.

This video is also not standalone, it's part of a series, and the full conclusion of this essay series
might not be satisfyingly reached until the thesis video, so I apologize for the seeming lack of
conclusion beyond the analysis itself in this video.
That said, thank you for watching, if the other videos in this series are out, make sure to check
them out, and if not, you almost definitely already know how to make this website tell you when
someone releases a video.


